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Abstract—Phase retrieval has been mainly considered in the
presence of Gaussian noise. However, the performance of the algo-
rithms proposed under the Gaussian noise model severely degrades
when grossly corrupted data, i.e., outliers, exist. This paper investi-
gates techniques for phase retrieval in the presence of heavy-tailed
noise, which is considered a better model for situations where out-
liers exist. An �p-norm (0 < p < 2) based estimator is proposed
for fending against such noise, and two-block inexact alternating
optimization is proposed as the algorithmic framework to tackle
the resulting optimization problem. Two specific algorithms are
devised by exploring different local approximations within this
framework. Interestingly, the core conditional minimization steps
can be interpreted as iteratively reweighted least squares and gra-
dient descent. Convergence properties of the algorithms are dis-
cussed, and the Cramér–Rao bound (CRB) is derived. Simulations
demonstrate that the proposed algorithms approach the CRB and
outperform state-of-the-art algorithms in heavy-tailed noise.

Index Terms—Phase retrieval, iterative reweighted least squares
(IRLS), gradient descent, impulsive noise, Cramér-Rao bound
(CRB).

I. INTRODUCTION

PHASE retrieval aims at recovering a signal x ∈ CN from
only the magnitude of linear measurements. This is an old

problem [2], [3] that has recently attracted renewed and growing
interest. Phase retrieval arises in many fields, such as X-ray crys-
tallography, coherent diffraction imaging, and optical imaging
and astronomy, where the detectors only record the intensity
information, because phase is very difficult and expensive to
measure.

The mathematical description of the phase retrieval problem
is simple: given the measuring matrix A = [a1 · · · aM ]H ∈
CM ×N and the measurement vector y ∈ RM , where
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am ∈ CN , and

y = |Ax|,
find x ∈ CN . Early attempts to solve the phase retrieval prob-
lem can be traced back to the 1970s, where techniques such
as Gerchberg-Saxton (GS) [2], Fienup [3] and their variants
were proposed. These algorithms have been empirically shown
to work well under certain conditions, although little had been
known regarding their convergence properties from a theoreti-
cal point of view. Recently, some new algorithms along this line
of work were proposed in [4], where the convergence issue is
better studied.

In recent years, more modern optimization-based approaches
for phase retrieval have been proposed. For example, Candès
proposed a semidefinite relaxation approach known as the
PhaseLift algorithm [5] and proved that exact recovery is pos-
sible with high probability in the noiseless case. Hand recently
studied the robustness of PhaseLift and showed that it can tol-
erate a constant fraction of arbitrary errors [6]. Wirtinger-Flow
(WF) [7] is a more recent approach that combines a good sta-
tistical initialization with a computationally light gradient-type
refinement algorithm. The combination works very well when
A is i.i.d. Gaussian. Following [7], conceptually similar ap-
proaches, namely, the truncated WF (TWF) [8] and truncated
amplitude flow (TAF) algorithms [9], [10] were proposed to
handle more challenging scenarios. In the recent work in [11],
[12], the authors proposed a least-squares feasible point pursuit
(LS-FPP) approach that aims to solve the same optimization
problem as LS PhaseLift in the presence of noise. Simulations
in [11] indicate that LS-FPP approaches the Cramér-Rao bound
(CRB) for the Gaussian measurement model considered in [11].

Some phase retrieval algorithms were originally developed
under an exact measurement model, and subsequently treated
the noisy case by replacing equality constraints with relaxed
inequality constraints [5]–[13]. Most of the existing algorithms
were explicitly or implicitly developed under a Gaussian noise
model. In certain applications, a subset of the measurements
may be corrupted much more significantly than the others, and
heavy-tailed noise may be encountered as well [14]–[16]. One
representative example is high energy coherent X-ray imag-
ing using a charge-coupled device (CCD), where the impulsive
noise originates from X-ray radiation effects on the CCD, and
the density of impulses increases with the intensity of X-ray
radiation or CCD exposure time [16], [17]. Under such circum-
stance, modeling the noise as Gaussian is no longer appropriate.
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In recent years, robust phase retrieval algorithms, e.g., [14],
[15], [18], have been proposed to handle outliers. The frame-
work in [15] considered an undersampled phase retrieval model
corrupted with Laplacian-distributed outliers, but the approach
was designed specifically for sparse x. Variations of TWF to
handle outliers were also considered. For example, the work in
[18] replaces the sample mean that is used in TWF by sample
median in the initialization and truncated update, which exhibits
robustness to outliers under certain conditions [18]. However,
as TWF, this approach still heavily relies on the assumption that
Gaussian measurements are employed.

Another important aspect of phase retrieval is how noise en-
ters the measurement model. Our previous work [11] considered
the noise model y = |Ax|2 + n. Another noise model that is
frequently considered in the literature [2]–[4] is

y = |Ax| + n. (1)

Notice the subtle but important difference between the two mod-
els: whether noise is added to the magnitude or the squared mag-
nitude. The choice hinges on the experimental setup, including
the measurement apparatus; but (1) is more widely adopted by
experimentalists.

Contributions: We consider the phase retrieval problem under
the model in (1) in the presence of impulsive noise, and focus
on designing robust algorithms to handle it. To fend against
impulsive noise, we adopt the �p -fitting (0 < p < 2) based es-
timator that is known to be effective in dealing with outliers,
and devise two optimization algorithms using two-block inex-
act alternating optimization. Specifically, the two algorithms
both solve local majorization-based approximate subproblems
for one block, instead of exactly solving the conditional block
minimization problem to optimality. Interestingly, starting from
different majorizations, the resulting solutions turn out equiv-
alent to iteratively reweighted least squares and gradient de-
scent, respectively. Unlike the existing inexact and exact alter-
nating optimization frameworks that mostly operate with convex
constraints, the proposed algorithms work with a unit-modulus
nonconvex constraint, so convergence analysis seems difficult.
Nevertheless, we prove convergence of the proposed algorithms
to a Karush-Kuhn-Tucker (KKT) point by exploiting the two-
block structure of the problem. We also derive computationally
light implementations using Nesterov-type and stochastic gra-
dient updates. In order to assist in performance analysis and
experimental design, we derive the CRB for the model in (1)
and under different parameterizations, in the presence of Lapla-
cian and Gaussian noise. Curiously, although related CRBs for
different noisy measurement models have been previously de-
rived in [11], [19]–[22], to the best of our knowledge, there is
no available CRB for the model in (1) – and our work fills this
gap. The proposed algorithms are validated by extensive simula-
tions. The simulations show that our approaches outperform the
state-of-the-art algorithms in the presence of impulsive noise.

A preliminary conference version of part of this work has
been submitted to EUSIPCO 2016 [1]. The conference ver-
sion includes one of the two basic algorithms, the Laplacian
CRB, and limited simulations. The second algorithm, Nesterov

acceleration and stochastic gradient-type updates, additional
CRB results, and, most importantly, proof of convergence of the
iterative algorithms are all provided only in this journal version,
which naturally also includes more comprehensive simulation
results.

Notation: Throughout the paper, we use boldface lowercase
letters for vectors and boldface uppercase letters for matrices.
Superscripts (·)T , (·)∗, (·)H , (·)−1 and (·)† represent trans-
pose, complex conjugate, conjugate transpose, matrix inverse
and pseudo-inverse, respectively. The Re{·} and Im{·} denote
the real part and imaginary part. E[·] is the expectation oper-
ator, | · | is the absolute value operator, || · ||F is the Frobe-
nius norm, || · ||p is the vector �p -norm, whose definition is
||x||p = (

∑N
i=1 |xi |p)1/p , � is the element-wise product, and

diag(·) is a diagonal matrix with its argument on the diagonal.
δij denotes the Kronecker delta function, and ∠(·) takes the
phase of its argument. 0m , 1m , and Im stand for the m × 1 all-
zero vector, m × 1 all-one vector, and m × m identity matrix,
respectively. Furthermore, trace(·) and ∂a/∂x denote the trace
and partial derivative operators, respectively.

II. PROPOSED ALGORITHMS

A. AltIRLS

Let us first consider the noiseless case where y = |Ax|. Ef-
fectively, it can also be written as

y � u = Ax (2)

where u = ej∠(Ax) is an auxiliary vector of unknown unit-
modulus variables with its mth component being um =
ej∠(aH

m x) . In the presence of impulsive noise, �p -(quasi)-norm
has be recognized as an effective tool for promoting sparsity and
fending against outliers [23]–[25]. Therefore, we propose to em-
ploy an �p -fitting based estimator instead of using the �2-norm,
which has the form of

min
|u|=1,x

M∑

m=1

(|ym um − aH
mx|2 + ε

)p/2
(3)

where 0 < p < 2 is chosen to down-weigh noise impulses (i.e.,
outliers), and ε > 0 is a small regularization parameter (e.g.,
ε ∈ [10−8 , 10−6 ]) that keeps the cost function within its differ-
entiable domain, which will prove handy in devising an effective
algorithm later.

To handle Problem (3), we follow the rationale of alternating
optimization, i.e., we first update x fixing u, and then we do the
same for u.

Assume that after some iterations, the current solution at
iteration r is (x(r) ,u(r)). At step (r + 1), the subproblem with
respect to (w.r.t.) x is

x(r+1) = arg min
x

M∑

m=1

(
|ym u(r)

m − aH
mx|2 + ε

)p/2
(4)

which is still difficult to handle. Particularly, when p < 1, the
subproblem itself is still non-convex; when p ≥ 1, the subprob-
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lem is convex but has no closed-form solution. Under such cir-
cumstances, we propose to employ the following lemma [26]:

Lemma 2.1: Assume 0 < p < 2, ε > 0, and φp(w) := 2−p
2

( 2
p w)

p
p −2 + εw. Then, we have

(
x2 + ε

)p/2 = min
w≥0

wx2 + φp(w) (5)

and the unique minimizer is

wopt =
p

2
(
x2 + ε

) p −2
2 . (6)

By Lemma 2.1, an upper bound of
∑M

m=1(|ym u
(r)
m − aH

mx|2 +
ε)p/2 that is tight at the current solution x(r) can be easily found:

M∑

m=1

(
|ym u(r)

m − aH
mx|2 + ε

)p/2

≤
M∑

m=1

(

w(r)
m

∣
∣
∣ym u(r)

m − aH
mx

∣
∣
∣
2

+ φp

(
w(r)

m

))

(7)

where

w(r)
m :=

p

2

(∣
∣
∣ym u(r)

m − aH
mx(r)

∣
∣
∣
2

+ ε

) p −2
2

(8)

and the equality holds if and only if x = x(r) . Instead of directly
dealing with Problem (4), we solve a surrogate problem using the
right hand side (RHS) of (7) at each iteration to update x. Notice
that the RHS of (7) is convex w.r.t. x and the corresponding
problem can be solved in closed-form:

x(r+1) =
(
W(r)A

)†W(r)(y � u(r)) (9)

where

W(r) = diag

(√

w
(r)
1 · · ·

√

w
(r)
M

)

. (10)

The conditional problem w.r.t. u is

u(r+1) = arg min
|u|=1

M∑

m=1

(
|ym um − aH

mx(r+1) |2 + ε
)p/2

.

(11)
Although the problem is non-convex, it can be easily solved to
optimality. Specifically, the first observation is that the partial
minimization w.r.t. u is insensitive to the value of p; i.e., given
a fixed x, for any p > 0, the solutions w.r.t. u are identical.
Second, for all p > 0, the solution is simply to align the angle
of ym um to that of aH

mx(r+1) , which is exactly

u(r+1)
m = ej∠(aH

m x( r + 1 ) ), m = 1, . . . , M. (12)

We update x and u alternately, until some convergence cri-
terion is met. We see that the way that we construct the upper
bound of the partial problem w.r.t. x is in fact the same as the
procedure in iteratively reweighted least squares (IRLS) [25],
[26]. The difference is that we ‘embed’ this IRLS step into an
alternating optimization algorithm. We therefore call this al-
gorithm alternating IRLS (AltIRLS), which is summarized in
Algorithm 1.

Algorithm 1: AltIRLS for phase retrieval.

1: function AltIRLS (y,A,x(0))
2: Initialize u(0) = exp(∠(Ax(0))) and W(0) = W(0)

= diag

(√

w
(0)
1 · · ·

√

w
(0)
M

)

with w
(0)
m = p

2

(

|ym u
(0)
m

− aH
mx(0) |2 + ε

) p −2
2

3: while stopping criterion has not been reached do
4: x(r) = (W(r−1)A)†W(r−1)(y � u(r−1)).
5: u(r) = exp(j∠(Ax(r)))

6: w
(r)
m = p

2

(∣
∣
∣ym u

(r)
m − aH

mx(r)
∣
∣
∣
2

+ ε

) p −2
2

,∀m

7: W(r) = diag

(√

w
(r)
1 · · ·

√

w
(r)
M

)

8: r = r + 1
9: end while

10: end function

A relevant question regarding Algorithm 1 is whether or not
this algorithm converges to a meaningful point, e.g., a stationary
or KKT point. Note that the block variable u is constrained to a
non-convex set, and we do not compute the optimal solution for
the block variable x at each iteration of Algorithm 1. For such
a type of algorithm, there is no existing theoretical framework
that establishes convergence. We therefore need careful custom
convergence analysis. We have the following result:

Proposition 2.1: Assume that 0 < p < 2 and ε > 0, and that
A has full column rank. Then, the solution sequence produced
by Algorithm 1 converges to a set K that consists of all the KKT
points of Problem (3).

Proof: See Appendix A. �
The result in Proposition 2.1 is interesting: Although the algo-
rithm that we propose to compute the �p fitting-based estimator
solves non-convex subproblems, it ensures convergence to a
KKT point. Such a nice property is proven by exploiting the
two-block structure of the algorithm. Note that the proof itself
does not rely on the specific form of the optimization problem
in (3), and thus can be easily extended to other two-block alter-
nating optimization cases, which we believe is of much broader
interest.

B. AltGD

Algorithm 1 uses a simple update strategy, but its complexity
may still become an issue when the problem size grows. Specif-
ically, the bottleneck of the AltIRLS algorithm lies in solving
the subproblem w.r.t. x, i.e.,

min
x

∣
∣
∣
∣
∣
∣W(r)(y � u) − W(r)Ax

∣
∣
∣
∣
∣
∣
2

2
(13)

whose closed-form solution can be computed via (9). It is ob-
served from (9) that the matrix inversion part requires O(N 3)
flops to compute and also O(N 2) memory to store, both of
which are not efficient for high-dimensional x – e.g., when x is
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Algorithm 2: AltGD for phase retrieval.

1: function AltGD (y,A,x(0))
2: Initialize u(0) = exp(∠(Ax(0)))
3: while stopping criterion has not been reached do
4: Choose μ(r−1) as the leading eigenvalue of

AH (W(r−1))2A or the trace of (W(r−1))2

5: x(r) = x(r−1) − 1/μ(r−1)∇f(x(r−1))
6: u(r) = exp(j∠(Ax(r)))
7: r = r + 1
8: end while
9: end function

a vectorized image, N is usually very large (more specifically,
for a 100 × 100 image, N is 10,000).

To circumvent this difficulty, one way is to employ a cer-
tain fast least squares solver such as conjugate gradient [28] to
handle Problem (13). This is a viable option, but such solvers
still typically require many iterations to obtain a fairly accurate
solution of (13). Here, we propose to deal with problem (13)
using a simpler approach. Specifically, let us denote

f (r)(x) =
∣
∣
∣
∣
∣
∣W(r)(y � u(r)) − W(r)Ax

∣
∣
∣
∣
∣
∣
2

2
(14)

and approximate (13) using the following function

g(r)(x) = f (r)(x(r)) + Re{(∇f (r)(x(r)))H (x − x(r))}

+
μ(r)

2

∥
∥
∥x − x(r)

∥
∥
∥

2

2
. (15)

where μ(r) ≥ 0 is a pre-specified parameter. Instead of opti-
mizing f (r)(x), we optimize g(r)(x). By rearranging terms, the
subproblem becomes

x(r+1) = arg min
x

∥
∥
∥
∥x −

(

x(r) − 1
μ(r) ∇f(x(r))

)∥
∥
∥
∥

2

2
(16)

and the solution is

x(r+1) = x(r) − 1
μ(r) ∇f(x(r)) (17)

i.e., a gradient step with step-size 1/μ(r) , where the gradient is

∇f (r)(x(r)) = AH
(
W(r))2(Ax(r) − y � u(r)) (18)

which does not require any matrix inversion operation. Also,
the N × N matrix does not need to be stored, if we take the
order Ax(r) → (

W(r)
)2Ax(r) → AH

(
W(r)

)2Ax(r) to com-
pute the update of x. Therefore, using this approach, both mem-
ory and complexity requirements are less demanding. We sum-
marize the algorithm in Algorithm 2. We call this algorithm
alternating gradient descent (AltGD).

Note that when μ is chosen as the Lipschitz constant, (15) is
an upper bound of the cost function in (13). In other words, we
have

f (r)(x) ≤ g(r)(x)

Fig. 1. Cost function value versus number of iterations.

if μ(r) ≥ λmax(AH (W(r))2A), and the equality holds if
and only if x = x(r) . Therefore, the algorithmic structure of
Algorithm 2 is the same as that of Algorithm 1, except that the
majorizing functions of the x-block are different – which means
that the proof of convergence of Algorithm 1 also applies here:

Corollary 2.1: If μ(r) ≥ λmax(AT (W(r))2A) for all r, then
the whole sequence produced by Algorithm 1 converges to K.

Remark 2.1: Exactly computing λmax(AH (W(r))2A) may
be time consuming in practice. Many practically easier ways
can be employed, e.g., the Armijo rule-based line search [27].
In our simulations, we use a simple heuristic: we let μ(r) =
trace((W(r))2) instead of λmax(AH (W(r))2A). The rationale
behind is that we observe that the energy of AH (W(r))2A is
usually dominated byW(r) , and using μ(r) = trace((W(r))2) is
a good approximation of trace(AH (W(r))2A) that is an upper
bound of λmax(AH (W(r))2A). We should mention that this
step-size choice is a heuristic, but works well in practice, as will
be shown in the simulations.

C. Further Reducing Complexity

1) Extrapolation: Algorithm 2 is easier to compute than
Algorithm 1 in terms of per-iteration complexity. However, first-
order methods tend to require more iterations in total. One way
to alleviate this effect is to incorporate Nesterov’s “optimal first-
order” method [29]–[31], i.e., for each update, we set

z(r) = x(r) +
t(r−1) − 1

t(r)

(
x(r) − x(r−1)

)
(19)

t(r) =
1 +

√
1 + 4(t(r−1))2

2
(20)

x(r+1) = z(r) − 1
μ(r) ∇f (r)(z(r)) (21)

In practice, the above ‘extrapolation’ technique greatly expe-
dites the whole process in various applications [23], [32]. Some
numerical evidence can be seen in Fig. 1, where a simple com-
parison between the plain Algorithm 2 and the extrapolated
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version is presented. We choose SNR = 20 dB, N = 16 and
M = 128. Each element in the signal and measurement vectors
is independently drawn from the complex circularly symmetric
Gaussian distribution with mean zero and variance one. The
noise is generated from a symmetric α stable (SαS distribution)
which will be described in detail in Section IV. Fig. 1 shows
the convergence of AltGD and accelerated AltGD using extrap-
olation when p = 1.3. As we can see, the accelerated AltGD
converges after 40 iterations which is much faster than AltGD
that converges after 200 iterations.

2) Block Incremental / Stochastic Gradient: When N is very
large (thus M > N is larger), even gradient computation is too
much of a burden. In such cases, a pragmatic way is to “break
down” the problem to pieces and do (block) incremental or
stochastic gradient. We divide the measurement matrix into L
blocks Γl . Then it is straightforward to get the gradient for the
lth block as

∇fΓ l
(x(r)) = AH

Γ l

(
W(r)

Γ l

)2(AΓ l
x(r) − yΓ l

� u(r)
Γ l

)
. (22)

The estimate of x is updated according to

x(r+1) = x(r) − 1

μ
(r)
Γ l

∇fΓ l
(x(r)) (23)

where μ
(r)
Γ l

is chosen as the leading eigenvalue of AH
Γ l

AΓ l
or

trace((W(r)
Γ l

)2). The algorithm can proceed block by block with
revisits, or by randomly picking blocks, resulting in block incre-
mental gradient and stochastic gradient versions, respectively.

A subtle point here is that, to maintain robustness, one should
choose a block size larger than one. The reason is that the
robustness of the algorithm is brought by treating different ym

with different weights (more specifically, by downweighting
the outliers). When using only one ym for updating, this ability
vanishes.

III. CRAMÉR-RAO BOUND ANALYSIS

In this section, the CRB on the accuracy of retrieving x in
(1) is presented. The CRB provides a lower bound on the MSE
of unbiased estimators. In many signal processing applications,
one cannot guarantee that an estimator is unbiased, or even that
an unbiased estimator exists, yet the CRB is still surprisingly
predictive of estimator performance [35], [38]. For phase re-
trieval under Gaussian noise, over the past few years, several
CRBs have been derived for different models, e.g., 2-D Fourier-
based measurements [19], noise added prior to taking the mag-
nitude [20] and noise added after taking the magnitude square
[11], [21]. To the best of our knowledge, there is no available
CRB formula for the signal model in (1). Here, we present the
CRBs for two particular types of noise: Laplacian and Gaussian
noise. Although our main interest here lies in evaluating perfor-
mance of robust algorithms and the Laplacian CRB serves this
purpose, the Gaussian CRB is of interest in other application
contexts. Note that we use subscripts r, c, L and G to stand for
real, complex, Laplacian and Gaussian, respectively.

To get started, we should note that our derivations are based
on the assumption that aH

mx is nonzero. That is because the term
|Ax| is non-differentiable at aH

mx = 0, the Fisher information

only exists at aH
mx 
= 0. With this caveat, we have the following

proposition:
Proposition 3.1: In Laplacian noise, the CRB is

CRBL,c = trace
(
F†

L,c

)
(24)

where

FL,c =
2
σ2

n

GL,c diag(|Ax|−2)GT
L,c (25)

with

GL,c =

[
Re{AH diag(Ax)}
Im{AH diag(Ax)}

]

. (26)

Proof: See Appendix B. �
The CRB for real x is a special case of the complex case, which
can be easily derived from Proposition 3.1:

Proposition 3.2: In Laplacian noise, the CRB of real-valued
x is

CRBL,r = trace
(
F−1

L,r

)
(27)

where

FL,r =
2
σ2

n

GL,r diag(|Ax|−2)GT
L,r (28)

with

GL,r = Re{AH diag(Ax)}. (29)

In Appendix C, we show that when A has full column rank,
FL,c is singular with rank (2N − 1) while FL,r is always non-
singular. Thus, for complex x, we adopt its pseudo-inverse to
compute an optimistic (looser) CRB, which is still a valid lower
bound that can be used to benchmark the efficiency of any bi-
ased estimator [33]–[35]. If x is close to zero, then the CRB is
not tight at low SNRs, and more measurements should be used
to approach the CRB.

Proposition 3.3: In the Gaussian noise case, the CRB is two
times larger than the CRB in Proposition 3.1, i.e.,

CRBG = 2CRBL . (30)

Proof: The proof is straightforward by calculating the Gaus-
sian FIM and comparing it with the Laplacian FIM in (28). We
omit it here. �

In certain applications of phase retrieval, we may be more
interested in the performance bound for retrieving the phase
of x. The following proposition provides the CRB on both
the phase and amplitude of x under Laplacian noise. Note
that in the Gaussian noise case, it is straightforward to apply
Proposition 3.3 to compute the lower bound. Similar results can
also be found in [36].

Proposition 3.4: In Laplacian noise, the CRB of the ampli-
tude of x is

CRBL,|x| =
N∑

i=1

di (31)
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and the variance of any biased estimate of the phase of x is
bounded below by

CRBL,∠(x) =
2N∑

i=N +1

di (32)

where d = [d1 · · · d2N ] contains the main diagonal elements
of F†

L which in this case is defined as

FL =
2
σ2

n

GL diag(|Ax|−2)GT
L (33)

with

GL =

[
diag(|x|)−1

IN

][
Re
{

diag (x∗)AH diag(Ax)
}

Im{diag(x∗)AH diag(Ax)}

]

.

(34)
Proof: See [11] and Appendix B. �
Remark 3.1: In deriving the CRB in Proposition 3.4, we

use no additional assumptions on x. Therefore, Proposition 3.4
works for both real and complex x. Specifically, in the real case,
the phase is actually the sign of x. Here, FL is also singular
with rank deficit equal to one, so we adopt its pseudo-inverse
to compute the CRB. We omit the proof of rank-1 deficiency of
FL , since it follows the line of argument in Appendix C.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
methods and compare them with some existing algorithms,
namely, WF [7], TWF [8], TAF [9], AltMinPhase [4], MTWF
[18] and GS [2] in terms of MSE performance, where the MSE
is computed after removing the global phase ambiguity between
the true and estimated x. In the simulations, we consider an ex-
ponential signal x = exp(j0.16πt) comprising 16 samples, i.e.,
t = 1, · · · , 16. We test the algorithms using different types of
A, i.e., random matrix that is usually employed in [4], [7]–[9],
[18], and the 2D Fourier matrix that is widely used in real de-
vices [2], [3] (cf. subsection IV-E). For the random measuring
matrix case (used in subsections A-D), the measurement vec-
tors are generated from a masked Fourier transformation, which
takes the form of

A =
[
(DΛ1)T · · · (DΛK )T

]T

where K = M/N is the number of masks, D is a N × N dis-
crete Fourier transform (DFT) matrix with DDH = NIN and
Λk is a N × N diagonal masking matrix with its diagonal en-
tries generated by b1b2 , where b1 and b2 are independent and
distributed as [5]

b1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 w. prob. 0.25

−1 w. prob. 0.25

−j w. prob. 0.25

j w. prob. 0.25

and b2 =

{√
2/2 w. prob. 0.8√
3 w. prob. 0.2.

All results are obtained using a computer with 3.1 GHz Intel
Xeon E31225 and 16 GB RAM. For the random measurement
case, the algorithms are all initialized from the same starting
point that is computed by picking the principal eigenvector of

Fig. 2. MSE versus p.

∑M
i=1 y2

i aiaH
i , and the stopping criterion is

∣
∣
∣
∣
∣
∣
∣y − |Ax(r) |∣∣∣∣22 −

∣
∣
∣
∣y − |Ax(r−1) |∣∣∣∣22

∣
∣
∣

∣
∣
∣
∣y − |Ax(r−1) |∣∣∣∣22

≤ 10−7

or the number of iterations reaching 1000. Furthermore, we use
AltGD with extrapolation for the simulations.

A. Selection of p

Before we do the performance comparison, let us study how
p affects the performance of the proposed methods. In this ex-
ample, SNR is fixed at 20 dB, where the SNR is computed
via

SNR = 10 log10

( ||Ax||2
||n||2

)

.

We assume that 10% of the data are corrupted by outliers that are
generated from the Gaussian distribution with mean zero and
variance 100, and the remaining elements in n are zero. K = 8
masks are employed to generate the measurements. Fig. 2 shows
the MSE as a function of p. Note that, when p is smaller than 1,
in order to achieve convergence in a non-convex setting, we ini-
tialize our methods in a two-step way. Specifically, for each of
the proposed methods, when 0.6 < p < 1, we use the spectrum
output to initialize our methods with p = 1.3 and 100 iterations,
and then choose the corresponding output to do another 100
iterations with p = 1 and use the output as a final starting point.
When p ≤ 0.6, we take an additional intermediate step with
p = 0.7 and 100 iterations to gradually stage the initialization
process for our approaches, since in this p-regime the subprob-
lem is strictly non-convex. It is observed that generally, p ≤ 1
provides better performance than p > 1, especially for AltIRLS.
When p < 0.5, AltGD suffers severe performance degradation
while AltIRLS still performs well. Our understanding is that
first-order algorithms are in general more sensitive to prob-
lem conditioning, and a small p can lead to badly-conditioned
W(r) . Working with p < 1 usually requires much more careful
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Fig. 3. Signal recovery performance comparison.

initialization. In our experience, p ≈ 1.3 strikes a good compro-
mise between numerical stability and estimation accuracy.

To illustrate the performance provided by our proposed meth-
ods with p < 1 over the state-of-art algorithms including TWF,
WF, TAF, AltMinPhase, MTWF, and GS, we present the fol-
lowing example, where the parameters are the same as for
Fig. 2, except that 20% of the data are corrupted by outliers.
Note that among these competitors, TAF, AltMinPhase and GS
share the same magnitude measurement model in (1) as ours,
but WF is designed under the energy measurement model (i.e.,
ym = |aH

mx|2 + nm ). In addition, TWF and MTWF adopt a
Poisson model with λ = |aH

i x|2 . Hence, y2 is fed to WF, TWF
and MTWF, where the squaring is element-wise. We set p = 0.4
for the proposed methods, and perform Monte-Carlo trials to
estimate MSE = 10 log10(||x̂ − x||22). We show the results of
1,000 random trials in Fig. 3. One can see that for most trials the
benchmark algorithms fail to give reasonable results. However,
our methods produce much lower MSEs, which indicates that
our proposed methods are efficient in suppressing outliers.

B. Statistical Performance Comparison

We now compare the MSE performance as a function of
SNR. The results are averaged over 500 Monte-Carlo trials. To

Fig. 4. CPU time versus number of variables N in GMM noise.

simulate outliers, we use the Laplacian distribution, the α-stable
distribution, and a Gaussian mixture model (GMM) to gener-
ate heavy-tailed noise n, respectively. Specifically, the outlier
generating process is summarized below:

1) Laplacian: The probability density function (PDF) of the
Laplacian distribution is given in (52).

2) α-stable: The PDF of an α-stable distribution is generally
not available, but its characteristic function can be written in
closed-form as

φ(t;α, β, c, μ) = exp (jtμ − γα |t|α (1 − jβsgn(t)Φ(α)))

where Φ(α) = tan(απ/2), 0 < α ≤ 2 is the stability parame-
ter, −1 ≤ β ≤ 1 is a measure of asymmetry, γ > 0 is a scale
factor which measures the width of the distribution and μ is a
shift parameter. There are two special cases that admit closed-
form PDF expression, that is, α = 1 and α = 2 which respec-
tively yield the Cauchy and Gaussian distributions. For α < 2,
φ(t;α, β, γ, μ) possesses heavy tails, and thus is considered suit-
able for simulating impulsive noise. The parameter α controls
the density of impulses - smaller α’s correspond to more out-
liers. In the following, we set α = 0.8, and the other parameters
are β = 0, γ = 2 and μ = 0, resulting in a symmetric α-stable
(SαS) distribution with zero-shift.

3) GMM: In our simulations, we also use a two-component
GMM to generate impulsive noise, whose PDF is as follows:

p(n) =
2∑

i=1

ci√
2πσ2

i

exp
{

−|n|2
2σ2

i

}

(35)

where σ2
i is the variance of the ith term, and 0 ≤ ci ≤ 1 is the

probability of occurrence of the ith component. Note that we
have c1 + c2 = 1, and we set c2 < c1 and σ2

2 > σ2
1 – therefore,

the second component corresponds to outliers. In this example,
we choose c1 = 0.9, c2 = 0.1, σ2

1 = 0.1 and σ2
2 = 100, which

corresponds to a situation where strong outliers are present.

Figs. 5, 6 and 7 show the MSEs of x̂ under Laplacian, SαS
and GMM noise, respectively. In the simulations, the number
of measurements is set to be M = 8N . Note that for SαS and
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Fig. 5. MSE versus SNR in Laplacian noise.

Fig. 6. MSE versus SNR in SαS noise.

GMM noise, we set p = 1.3 for AltIRLS and AltGD, while for
Laplacian noise we let p = 1 which corresponds to the maxi-
mum likelihood estimator. In the Laplacian noise case, we in-
clude the CRB derived in Proposition 3.2 as a performance
benchmark. It is observed from Fig. 5 that our approaches out-
perform the GS algorithm and yield the MSEs which are closest
to the CRB. The performance gap between the proposed meth-
ods and their competitors becomes larger in the SαS and GMM
noise cases since the outliers become stronger; see Fig. 6 and 7.
This indicates that the proposed algorithms work better in more
critical situations, i.e., when more severe outliers exist. Note that
the MTWF performs slightly better than TWF in GMM noise
and its performance is inferior to our methods in the three noise
scenarios.

As a reference, we also plot the MSE performance versus
SNR in Gaussian noise in Fig. 8, where we set p = 2 for having
a maximum likelihood estimator. We compare the performance
of the algorithms with the CRB in Proposition 3.4. One can see
that the algorithms perform similarly when the noise follows
an i.i.d. Gaussian distribution. This suggests that the Gaussian

Fig. 7. MSE versus SNR in GMM noise.

Fig. 8. MSE versus SNR in Gaussian noise.

noise case may be an easier case - where all the algorithms under
test perform reasonably.

Fig. 4 compares the CPU time as a function of N , where SNR
is 10 dB, N increases from 8 to 128 and the other parameters
are the same as Fig. 7. It is seen that AltGD is the fastest1.

C. Success Rate Performance Comparison

Fig. 9 shows the success rate versus the proportion of outliers
in the measurements, where the GMM is employed to control
the outlier fraction. We vary c2 from 0 to 0.5 and fix σ2

1 = 0
and σ2

2 = 100. SNR is 10 dB. For the proposed methods, we
choose p = 0.4 for comparison. We declare success when the
squared Euclidean distance of the estimate x̂ from the ground-
truth x is smaller than or equal to 10−4 ; i.e., the success rate is

1Note that in the simulation we use the heuristic step size as stated in
Remark 2.1; if the step size μ = λm ax (AH (W (r ) )2A) is used, AltGD may
consume more time.
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Fig. 9. Success rate of exact recovery versus outlier fraction in GMM noise.

Fig. 10. Success rate of exact recovery versus M/N under GMM noise.

computed as

success rate =
1

500

500∑

i=1

γi (36)

where

γi =

{
1, if ‖x̂i − x‖2

2 ≤ 10−4

0, otherwise.
(37)

Fig. 9 shows that our methods outperform the benchmark meth-
ods by a large margin in terms of success rate. When the outlier
fraction is greater than 0.25, our methods can still estimate x
quite accurately, while the other six competitors all fail. Note
that the performance of AltIRLS is better than AltGD – but the
complexity of AltGD is much lower.

Fig. 10 plots the success rate versus sample complexity (mea-
sured in terms of M/N with N = 16), where SNR is 10 dB and
20% of the data are corrupted by outliers. It is obvious that our
two algorithms have the highest success rates when M/N ≥ 5,
while the other algorithms have very low success rates even
when M/N ≥ 8.

D. Performance Comparison on Caffeine Molecule Image
Data

In this subsection, we showcase the performance using real
caffeine molecule data that is often used to test phase retrieval
algorithms [7]. The caffeine molecule data with size 128 × 128
is the projection of electron density of a 3-D Caffeine molecule’s
density map onto the xy-plane. The objective is to reconstruct
the data from the magnitude of its masked Fourier transform.
Here, we use the same measuring process as in the previous sim-
ulations and K = 8 masks are used to generate measurements.
We compare the performance of AltGD, TAF, MTWF, and TWF.
We also include the block incremental (BI) implementation of
AltGD (cf. Section II.C2), which is referred to as BI-AltGD. The
outliers are generated from GMM with c2 = 0.3, σ2

1 = 0 and
σ2

2 = 100, which indicates that there are 30% of the data are
corrupted by outliers. SNR is 0 dB and the data is normalized
with unit norm. Fig. 11 plots the retrieved molecule’s density
map using AltGD, BI-AltGD with p = 1.3, TAF, MTWF and
TWF. It is seen in Fig. 11 that our schemes still work well, while
the other competitors yield blurred images.

E. Performance Comparison with 2D Fourier Measurements

In the above simulations, the measurement vectors are gener-
ated from coded diffraction pattern (CDP) with random masks.
The success of the existing algorithms such as the well-known
PhaseLift, WF and its variants are all based on the randomness
of measurements. However, to the best of our knowledge, the
CDP model is still considered to be impractical, as there has
been no device supporting the masking technique yet. In prac-
tice, most devices record the intensity of the Fourier transform
of the object, where the intensity is usually proportional to the
magnitude of the oversampled 2D Fourier measurements with
2× oversampling. In this case, the measurement matrix A is a
Kronecker product of two oversampled Fourier matrices.

With 2D Fourier measurements, the most successful method
is Fienup’s hybrid-input-output (HIO) algorithm [3], which has
been observed to give empirically reliable phase retrieval per-
formance, especially in the noiseless case. In the noisy case,
HIO can also provide good initialization for other algorithms,
e.g., GS. Therefore, HIO and HIO-initialized GS are employed
as baselines in this subsection.

In this simulation, we compare the performance of AltGD,
HIO and GS under 2D Fourier measurements in the pres-
ence of outliers, where GMM-type outliers are generated with
c2 = 0.1, σ2

1 = 0 and σ2
2 = 100. Each entry of the signal ma-

trix X ∈ R16×16 is generated from the normal distribution. Af-
ter zero-padding around X, we have X̃ ∈ R32×32 . Then the
measurements are obtained by first calculating 2D fast Fourier
transformation (FFT) on X̃ and then taking the magnitude of
2D FFT(X̃), where the sizes of left and right Fourier matrices
are both 32 × 32. Note that SNR is 10 dB and is computed as
10 log10(‖X̃‖2

F /‖N‖2
F ) where N ∈ R32×32 is the noise matrix.

For AltGD and GS, HIO with 5000 iterations is employed to
provide an initial estimate of X, and then an additional 5000 it-
erations are used in AltGD and GS, respectively. Moreover, HIO
with 10000 iterations is included as a baseline. For AltGD, we



6078 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 22, NOVEMBER 15, 2017

Fig. 11. Retrieving molecule image in SαS noise.

Fig. 12. Signal recovery performance comparison with 2D Fourier measure-
ments in GMM noise.

choose p = 1.3. The MSEs obtained from 1000 Monte-Carlo
tests are plotted in Fig. 12. It is seen that HIO does not perform
very well, and is inferior to AltGD and GS. AltGD has better
performance than GS, since most of its MSEs are concentrated
around −35 dB, while those obtained by GS are located around
−20 dB.

Finally, Fig. 13 shows the recovered image of 128 × 128
Cameraman from 2D Fourier measurements under GMM noise,
where SNR is 12 dB and the noise is generated in the same way
as for Fig. 12. The number of iterations used for initialization
and refinement are all 5000. For AltGD, we set p = 0.6. It is
seen that the image recovered from AltGD is much more clear
than those recovered by HIO and GS.

Fig. 13. Retrieving Cameraman image in GMM noise with 2D Fourier mea-
surements.

V. CONCLUSION

In this paper, we considered phase retrieval in the presence of
grossly corrupted data – i.e., outliers. We formulated this prob-
lem as an �p fitting problem, where 0 < �p < 2, and provided
an algorithmic framework that is based on two-block inexact
alternating optimization. Two algorithms, namely, AltIRLS and
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AltGD, were proposed under this framework. Although the al-
gorithms cannot be analyzed using standard convergence re-
sults for alternating optimization due to a nonconvex constraint,
we managed to show that the algorithms converge to a KKT
point. The tools used for convergence analysis can also be used
for analyzing convergence of other types of algorithms that in-
volve non-convex constraints and inexact alternating optimiza-
tion. Pertinent CRBs were derived for the noisy measurement
models considered. Simulations showed that the proposed algo-
rithms are promising in dealing with outliers in the context of
phase retrieval using both random measurements and 2D Fourier
measurements, for simulated and real image data.

APPENDIX A
PROOF OF PROPOSITION 2.1

Let us denote

f(x,u) =
M∑

m=1

(|ym um − aH
mx|2 + ε

)p/2
.

To simplify the analysis, let us define

ũm = [Re{um}, Im{um}]T ,

x̃ = [Re{xT }, Im{xT }]T ,

Ãm =

[
Re{aH

m}, −Im{aH
m}

Im{aH
m}, Re{aH

m}

]

.

Therefore, our problem can be written as

min
{ũm },x̃

f(x̃, {ũm}) =
M∑

m=1

(
‖ym ũm − Ãm x̃‖2

2 + ε
)p/2

s.t. ‖ũm‖2
2 = 1, ∀m. (38)

Note that in the new expression (38), all the variables are real-
valued. Accordingly, we may define

g(x̃, {ũ(r)
m }) =

M∑

m=1

(
w(r)

m ‖ym ũ(r)
m − Ãm x̃‖2

2 + φ(w(r)
m )

)
.

(39)
Now our algorithm can be re-expressed as

x̃(r+1) = arg min
x̃

g(x̃, {ũ(r)
m }) (40)

ũ(r+1)
m = arg min

‖ũm ‖2
2 =1, ∀m

f(x̃(r+1) , {ũm}) (41)

Let us assume the boundedness of x̃(r) and ũ(r) and w
(r)
m ,

which will be shown later. Under this assumption, the gradients
of g(x̃, {ũ(r)

m }) and f(x̃, {ũm}) exist. According to Lemma 2.1,
it is easily seen that

f(x̃, {ũ(r)
m }) ≤ g(x̃, {ũ(r)

m }) ∀x̃, (42a)

f(x̃(r) , {ũ(r)
m }) = g(x̃(r) , {ũ(r)

m }) (42b)

∇x̃f(x̃(r) , {ũ(r)
m }) = ∇x̃g(x̃(r) , {ũ(r)

m }). (42c)

Now, we have

f(x̃(r) , {ũ(r)
m }) = g(x̃(r) , {ũ(r)

m }) (43a)

≥ g(x̃(r+1) , {ũ(r)
m }) (43b)

≥ f(x̃(r+1) , {ũ(r)
m }) (43c)

≥ f(x̃(r+1) , {ũ(r+1)
m }) (43d)

where (43a) follows (42b), (43b) is obtained because of (40),
(43c) holds since we have the property in (42a), and (43b) is
obtained by the fact that the subproblem w.r.t. u is optimally
solved, i.e., (41).

Assume that {rj} denotes the index set of a convergent sub-

sequence, and that {x̃(rj ) , {ũ(rj )
m }} converges to (x̃ , {ũ

m})
Then, we have

g(x̃, {ũ(rj )
m }) ≥ g(x̃(rj +1) , {ũ(rj )

m }) (44a)

≥ f(x̃(rj +1) , {ũ(rj )
m }) (44b)

≥ f(x̃(rj +1) , {ũ(rj +1)
m }) (44c)

≥ f(x̃(rj + 1 ) , {ũ(rj + 1 )
m }) (44d)

= g(x̃(rj + 1 ) , {ũ(rj + 1 )
m }), (44e)

where (44d) is obtained by the fact that rj+1 ≥ rj + 1 since rj

indexes a subsequence. Taking j → ∞, and by the boundedness
of W(r) and continuity of g(·), we see that

g(x̃, {ũ
m}) ≥ g(x̃ ,u). (45)

The inequality in (45) means that x̃ is blockwise minimizer
of g(x̃, {ũ

m}). Therefore, it satisfies the partial KKT condition
w.r.t. x̃, i.e.,

∇x̃g(x̃ , {ũ
m}) = 0. (46)

By (42c), we immediately have

∇x̃f(x̃ , {ũ
m}) = 0. (47)

Similarly, by the update rule in (41), we have

f(x̃(rj ) ,u) ≥ f(x̃(rj ) , {ũ(rj )
m }) (48)

and thus

f(x̃ , {um}) ≥ f(x̃ , {u
m}). (49)

Therefore, ũ
m also satisfies the partial KKT condition

∇ũm
f(x̃ , {ũ

m}) + λ
m � ũ

m = 0, ∀m (50)

where λm ∈ R2 are dual variables. Combining (47) and (50), it
follows that every limit point of the solution sequence is a KKT
point.

Now, we rigorously show the boundedness of x̃(r) and ũ(r)

and W(r) . Let us first show that W(r) is bounded given finite
x̃(r) and ũ(r) . This is relatively easy, since y and A are always
bounded and thus W(r) is also bounded when 0 < p < 2 and
ε > 0 by definition (cf. Eq. (8)). Now, we show that x̃(r) and
ũ(r) are bounded. Since the algorithm is essentially majorization
minimization, there is no risk for x̃(r) being unbounded, if the
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initialization is bounded, A has full column rank, and y is
bounded. To explain, one can see that

‖y � ũ(r) − Ãx̃(0)‖p
p ≥ ‖y � ũ(r) − Ãx̃(r)‖p

p

≥ |‖y‖p
p − ‖Ãx̃(r)‖p

p |
≥ ‖Ãx̃(r)‖p

p − ‖y‖p
p . (51)

The first inequality holds because block upper bound minimiza-
tion algorithm always decreases the objective [40]. The sec-
ond inequality is due to the triangle inequality for ‖ · ‖p

p when
0 < p < 1 [39]; for p > 1, one can apply the same argument to
‖ · ‖p . From the above, one can see that

‖Ãx̃(r)‖p
p ≤ ∞.

Therefore, if A does not have a null space, then x̃(r) has to be
bounded. Consequently, W(r) is always bounded from above.

The next step is to show that the whole sequence converges
to K, the set of all the KKT points. This is relatively straightfor-
ward. Let us assume that the whole sequence does not converge
to K. This means that there exists a subsequence which does
not converge to K. The boundedness of x̃(r) , ũ(r) implies that
every subsequence of {x̃(r) , ũ(r)} has a limit point. We have
just shown that every limit point is a KKT point, and thus this is
a contradiction. Therefore, the whole sequence has to converge
to K.

APPENDIX B
CRB FOR LAPLACIAN NOISE

The likelihood function for Laplacian noise is given by [36],
[37]

p(y;x) =
M∏

i=1

1√
2σn

exp

{

−
√

2
σn

∣
∣yi − |aH

i x|∣∣
}

(52)

where the noise variance is σ2
n , and its log-likelihood function

is

ln p(y;x) = −M ln(
√

2σn ) −
√

2
σn

M∑

i=1

∣
∣yi − |aH

i x|∣∣ . (53)

The vector of unknown parameters for complex-valued x is

β = [Re{x1} · · · Re{xN }, Im{x1} · · · Im{xN }]T . (54)

It is worth noting that σ2
n is actually an unknown parameter

which should be considered as a part of β. However, since σ2
n

is uncorrelated with the real and imaginary parts of xi , their
mutual Fisher information is zero. It will not impact the final
CRB formula for x. For this reason, we do not include σ2

n in β.
Thus, the FIM can be partitioned into four parts, i.e.,

FL,c =

[
FL,rr FL,ri

FL,ir FL,ii

]

(55)

where

[FL,c ]m,n = E

[
∂ ln p(y;x)

∂βm

∂ ln p(y;x)
∂βn

]

. (56)

The partial derivative of ln p(y;x) with respective to βm is

∂ ln p(y;x)
∂βm

= −
√

2
σn

M∑

i=1

∂
∣
∣yi − |aH

i x|∣∣
∂βm

=
√

2
σn

M∑

i=1

yi − |aH
i x|

∣
∣yi − |aH

i x|∣∣
∂|aH

i x|
∂βm

=
√

2
σn

M∑

i=1

sgn(yi − |aH
i x|)∂|aH

i x|
∂βm

(57)

where

sgn(a) =
{

1, a > 0
−1 , a < 0

(58)

and

∂|aH
i x|

∂βm

=

⎧
⎪⎨

⎪⎩

[Re{ai aH
i x}]m

|aH
i x| , for βm = Re{xm}

[Im{ai aH
i x}]m

|aH
i x| , for βm = Im{xm}.

(59)

Substituting (57) into (56), we have

[FL,c ]m,n =
2
σ2

n

M∑

i=1

M∑

j=1

∂|aH
i x|

∂βm

∂|aH
i x|

∂βn

× E
[
sgn(yi − |aH

i x|) · sgn(yj − |aH
j x|)] .

(60)

Next we compute the value of E[sgn(yi − |aH
i x|)sgn(yj −

|aH
j x|)]. For notational simplicity, let si = sgn(yi − |aH

i x|).
It is obvious that when i = j, we have

E [sisj ] = 1. (61)

For i 
= j, we first write

E [sisj ] = Pr(si = sj ) × (+1) + Pr(si 
= sj ) × (−1)

= 2Pr(si = sj ) − 1 (62)

where Pr standards for the probability. Then the value of
Pr(si = sj ) is computed as

Pr(si = sj ) = Pr(si = 1|sj = 1)Pr(sj = 1)

+ Pr(si = −1|sj = −1)Pr(sj = −1)

= Pr(si = 1)Pr(sj = 1)

+ Pr(si = −1)Pr(sj = −1)

= 0.5 (63)

where Pr(si = 1) = Pr(si = −1) = 0.5 and the second equa-
tion follows by independence of si and sj when i 
= j. Substi-
tuting (63) into (62) and using (61) yields

E [sisj ] =
{

1, i = j
0, i 
= j.

(64)

Substituting (64) into (60), we obtain

[FL,c ]m,n =
2
σ2

n

M∑

i=1

∂|aH
i x|

∂βm

∂|aH
i x|

∂βn

. (65)
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Now using (59) and (65), the four sub-FIMs can be easily
derived as

FL,rr =
2
σ2

n

Re{AH diag(Ax)} · diag(|Ax|−2)

× Re{AH diag(Ax)}T (66)

FL,ii =
2
σ2

n

Im{AH diag(Ax)} · diag(|Ax|−2)

× Im{AH diag(Ax)}T (67)

FL,ri =
2
σ2

n

Re{AH diag(Ax)} · diag(|Ax|−2)

× Im{AH diag(Ax)}T (68)

FL,ir = FT
L,ri . (69)

Combining (66)–(69), we obtain

FL,c =
2
σ2

n

GL,c diag(|Ax|−2)GT
L,c (70)

where

GL,c =

[
Re{AH diag(Ax)}
Im{AH diag(Ax)}

]

. (71)

This completes the proof of Proposition 3.1.

APPENDIX C
PROOF OF RANK PROPERTY OF FL,c AND FL,r

We note here that FL,c is derived under the assumption of
nonzero aH

mx. Therefore, diag(|Ax|−2) is full rank. As a result,
computing the rank of FL,c is equivalent to computing the rank
of GL,c . To this end, define a nonzero vector v = [vT

1 vT
2 ]T ∈

R2N , which leads to

GT
L,cv = Re{AH diag(Ax)}T v1 + Im{AH diag(Ax)}T v2 .

(72)
Now let u = v1 + jv2 , then

GT
L,cv = Re

{(
AH diag(Ax)

)H
u
}

= Re {(Ax)∗ � (Au)} (73)

which equals to zero if and only if

u = jx (74)

i.e.,

GT
L,cv = Re

{
j |Ax|2

}
= 0. (75)

This means that there is only one direction v = [−Im{x}T

Re{x}T ]T , which is non-zero, lies in the null space of GL,c ,
thus also in the null space of FL,c .

In the real x case, similar to the proof of FL,c , it suffices to
show that there is no nonzero vector v ∈ RN making FL,rv =
0. It is easy to see that

GT
L,rv = Re {(Ax)∗ � (Av)} . (76)

Since v is real-valued, it cannot be set to v = jx to make (76)
zero. Given a nontrivial A, it is impossible to find a v such

that Av = 0 except v = 0. Therefore, FL,r is full rank. This
completes the proof.
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