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The method of direction estimation (MODE) offers appealing ad-
vantages such as asymptotic efficiency with mild computational com-
plexity and excellent performance in handling coherent signals, which
are not shared by conventional subspace-based methods. However, the
MODE employs additional assumption and constraints on the sym-
metry of the root polynomial coefficients, which might cause severe
performance degradation in the scenario of low signal-to-noise ra-
tio/small sample size, since any estimation error will be enlarged twice
due to the symmetry. Moreover, the standard realization for MODE
does not have a closed-form solution for updating its estimates. In
this paper, the optimization problem of MODE is proved to be equiv-
alent to that of the principal-eigenvector utiliztion for modal analysis
(PUMA) algorithm. We show that PUMA which has closed-form solu-
tion, that does not rely on any additional assumption and constraint
on the coefficients, is a better surrogate than MODE for minimizing
the same cost function. Extensive simulation results are carried out to
support our standpoint.
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I. INTRODUCTION

Direction-of-arrival (DOA) estimation is a fundamental
array processing problem with numerous applications, e.g.,
radar [1], sonar [2], and wireless communications [3], [4]. It
has been well studied during the past four decades, resulting
in many efficient and accurate algorithms [5]–[22].

Among them, the maximum likelihood (ML) [5] ap-
proach is able to provide efficient DOA estimation but at
the expense of huge complexity which is mainly due to
the multidimensional search. Although optimization alter-
natives such as Newton’s method can be applied to avoid
the searching step, global convergence is not guaranteed
since the ML objective function is nonconvex. Subspace-
based DOA estimation algorithms can offer a good tradeoff
between the resolution ability and computational complex-
ity, and have been widely studied. In particular, multiple
signal classification (MUSIC) [6] and estimation of signal
parameters via rotation invariance techniques (ESPRIT) [7]
as representatives of the subspace approach have attracted
great interests due to their simplicity and high accuracy,
and a plenty of their variants [8]–[18] have been developed
subsequently. For example, computationally efficient mod-
ifications of the MUSIC algorithm have been devised in
[14]–[18]. However, these algorithms suffer performance
degradation when coherent/high correlated signals appear,
thus requiring decoherency technique, e.g., spatial smooth-
ing (SS) [19] or forward–backward SS (FBSS) [20], but
at the expense of losing array aperture. In particular, a
real-valued version of root-MUSIC, which is named as
unitary root-MUSIC, has been proposed [18]. This algo-
rithm exploits a centro-Hermitian property of the uniform
linear array (ULA) to transform complex-valued data into
the real space. This process is equivalent to performing a
one-step forward-backward smoothing to the sample co-
variance matrix, hence it can handle at most two coherent
signals. However, when there are more than two coherent
signals, the unitary root-MUSIC algorithm cannot work
properly.

Compared to MUSIC and ESPRIT, the method of di-
rection estimation (MODE) [21]–[22] is of great interest,
since it has appealing advantages over MUSIC and ESPRIT.
These includes the following.

1) It performs like ML but does not require the computa-
tionally intensive searching procedure and is known to
be approximately efficient in the large sample case.

2) It can handle coherent signals.
3) It is inherently not an iterative method, and hence, does

not have the convergence problem.

Moreover, the MODE is solved efficiently through poly-
nomial root finding in the ULA setting. Those properties
make MODE a competitive candidate for DOA estimation.
However, to minimize the MODE cost function efficiently,
Stoica and Sharman [21] assume that the polynomial coef-
ficients are symmetric, which is necessary but not sufficient
for solving the root polynomial, and then employ additional
constraints, i.e., fixing the real or imaginary part of the first
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polynomial coefficient to be one, to avoid nonuniqueness
of the coefficients. Note that it is shown in [26] and [27]
that such an assumption is not exactly correct and might
cause performance loss. In practice, due to the noise cor-
ruption, especially in low signal-to-noise ratio (SNR) or
small sample size cases, the performance of MODE will be
very sensitive to the symmetry assumption, since the coef-
ficients mainly depend on half of its elements. When the
estimates are not correct, after compensating the other half
using conjugate symmetry, the error will be enlarged twice,
resulting in bad performance. According to our experience,
the performance degradation happens very frequently for
odd source number, even for single source case. Further-
more, the MODE does not have a closed-form solution.

To compensate the performance loss of MODE at the
low SNR region, Gershman and Stoica have proposed the
MODEX (MODE with extra-roots) algorithm [23], [24].
MODEX runs the MODE twice with assumed number of
sources being K and P (P > K), respectively, to gener-
ate (P + K) DOA candidates, and then employs the de-
terministic/stochastic ML cost function to help selecting
K of them as the final DOA estimates. Provided that K

is odd, if we properly choose P = K + 1 which is even,
MODEX will improve the threshold performance of MODE
a lot, where the performance improvement mainly de-
pends on MODE with even P . Recently, we have also
employed a similar idea and proposed an enhanced
principal-eigenvector utilization for modal analysis
(EPUMA) technique to perform DOA estimation. Since we
do not have any assumptions on the polynomial coefficient
vector, the EPUMA does not suffer performance loss in the
case of odd K . Unlike the MODEX, EPUMA performs re-
liably no matter what K is. More detailed comparison will
be provided in the following Sections III and IV.

In this paper, we focus on presenting an efficient real-
ization of MODE, i.e., PUMA, and establishing the ana-
lytical variance expression for MODE without introducing
any additional assumptions or constraints on the polyno-
mial coefficients. We show that PUMA and MODE, which
are derived based on different theories, have the equivalent
cost function. Note that Zachariah et al., have also showed
the equivalence of the cost functions of these two algo-
rithm [25]. We would like to execute a deep comparison for
these two algorithms as well as their respective variants, i.e.,
EPUMA and MODEX, to show that PUMA has advantages
over MODE and it should be a better surrogate than MODE
for minimizing the same cost function. Simulation results
are provided to showcase that the performance of MODE is
sensitive to the source number. Specifically, MODE works
well for even source numbers but not for the odd case,
and it even does not work when there is only one source.
However, PUMA does not have such a problem, it cannot
only provide reliable DOA estimates, outperform MODE
exceedingly in the odd source number scenarios, but also is
easier to be realized and is more computationally attractive
than MODE.
NOTATION Throughout the paper, we use boldface lowercase
letters for vectors and boldface uppercase letters for ma-

trices. Superscripts (·)T , (·)∗, (·)H , (·)−1, and (·)† represent
transpose, complex conjugate, conjugate transpose, matrix
inverse, and pseudoinverse, respectively. The â denotes
an estimate of a, � is the element-wise product, ⊗ is the
Kronecker product, E[·] is the expectation operator, and
vec(·) is the vectorization operator. The tr(·) is the trace
operator, Re takes the real part, 0m×n is the m × n zero
matrix, and Im is the m × m identity matrix. The blkdiag(·)
and diag(·) stand for block diagonal and diagonal matrices,
respectively. Finally, δi,j is the delta function.

II. SIGNAL MODEL AND MODE

A. Signal Model

The problem of estimating the DOAs of K narrowband
signals using a M-element ULA can be modeled as

x(t) = As(t) + n(t), t = 1, · · · , N (1)

where x(t) ∈ C
M is the observation vector, s(t) ∈ C

K is the
unknown vector of wave amplitudes, M ≥ K , n(t) ∈ C

M

is the additive noise vector, N is the number of samples,
and A ∈ C

M×K is the array manifold matrix which has the
form of

A = [a(θ1) · · · a(θK )] (2)

with its kth steering vector being

a(θk) = [
1 ej2π sin(θk )d/ν · · · ej2π (M−1)sin(θk)d/ν

]T
. (3)

Here, d is the array interelement spacing and ν is the wave-
length. The problem dealt with in this paper is to estimate
θ = [θ1 . . . θK ]T , under the assumption of ULA and known
K , from the received data matrix, i.e.,

X = [x(1) · · · x(N)]. (4)

Let us write the eigenvalue decomposition (EVD) of the
array covariance matrix as

R = E
[
XXH

] = Us�sUH
s + Un�nUH

n (5)

where

�s = diag(λ1 . . . λK ) (6)

�n = diag(λK+1 . . . λM ) (7)

contain the K signal and (M − K) noise eigenvalues of
R, respectively, whereas Us and Un are signal and noise
subspaces. In the finite sample case, R is estimated as

R̂ = XXH

N
. (8)

The EVD of R̂ can be written as

R̂ = Ûs�̂sÛH
s + Ûn�̂nÛH

n (9)

where �̂s , �̂n, Ûs , and Ûn are the estimates of �s , �n, Us ,
and Un, respectively.
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B. MODE

The MODE estimates DOAs by minimizing the follow-
ing cost function [22]:

f (b̄) = tr
(
�Ûs�̂ÛH

s

)
(10)

where

b̄ = [b0 b1 . . . bK ]T (11)

� = B(BH B)−1BH (12)

�̂ = (�̂s − σ̂ 2
n )2�̂

−1
s

= diag(γ̂1 . . . γ̂K ) (13)

with

B =

⎡

⎢
⎣

bK bK−1 · · · b0 0
. . .

. . .
. . .

0 bK bK−1 · · · b0

⎤

⎥
⎦

H

(14)

γ̂k = (
λ̂k − σ̂ 2

n

)2
/λ̂k (15)

σ̂ 2
n = 1

M − K
tr(�̂n). (16)

The connection between b and {θk}Kk=1 is built upon the
following equation:

b0z
K + b1z

K−1 + · · · + bK = b0

K∏

k=1

(
1 − ej2πkd sin(θ)/ν

)

= 0 (17)

where z = ej2πd sin(θ)/ν and the equation holds if and only if
θ is the true DOA. Following [21] and [22], DOAs can be
estimated via a two-step procedure which are as follows.

1) Initialize BH B using the identity matrix to obtain a guess
of b̄, and then refine ˆ̄b iteratively by minimizing

f (b̄) = tr
(
B(B̂H B̂)−1BÛs�̂ÛH

s

)
.

2) Estimate DOAs via finding the roots of (17).

Note that in the first step, when b̂ is obtained, we sub-
stitute it into (14) to evaluate B̂.

The detailed steps of minimizing f (b̄) are given as fol-
lows [21].

Let

[s̃1 · · · s̃K ] =

⎡

⎢
⎣

s̃1,1 · · · s̃1,K

...
...

s̃M,1 · · · s̃M,K

⎤

⎥
⎦ = Ûs�̂

1/2
. (18)

Then

BH s̃k =

⎡

⎢
⎣

s̃K+1,k · · · s̃1,k

...
...

s̃M,k · · · s̃M−K,k

⎤

⎥
⎦ b̄ = S̃kb̄. (19)

Define V = BH B, where its Cholesky decomposition is
V1/2. This leads to

H =

⎡

⎢
⎣

V1/2S̃1
...

V1/2S̃K

⎤

⎥
⎦ (20)

Thus, the MODE cost function becomes

f (b̄) = ‖Hb̄‖2
2. (21)

In order to find the estimate of b̄ efficiently, Stoica and
Sharman put an additional constraint on it, i.e.,

bn = b∗
K−n ∀n = 0, . . . , K (22)

which means that b̄ is conjugate symmetric. To proceed, it
is necessary to introduce the following vector:

β = [b0 · · · bd ]T (23)

where d = 
(K − 1)/2� with 
e� being the largest inte-
ger less than or equal to e. Now the conjugate symmetric
constraint can be expressed as

b̄ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
β

Kβ∗

]
for odd K

⎡

⎣
β

μ

Kβ∗

⎤

⎦ for oven K

(24)

where K is an exchanging matrix and μ is a real-valued
scalar number.

We further write H as

H =
{

[H1 | H2] for odd K

[H1 | h | H2] for even K
. (25)

For notational simplicity, let subscript “(·)R” and “(·)I ” be
the real and imaginary parts of a complex number, respec-
tively. When K is odd, (21) becomes

f (b̄) =
∥
∥
∥∥

[
H1R + (H2K)R (H2K)I − H1I

H1I + (H2K)I H1R − (H2K)R

] [
βR

βI

]∥
∥
∥∥

2

2

	= ‖Gρ‖2
2. (26)

When K is even

f (b̄)

=
∥
∥
∥
∥∥
∥

[
H1R + (H2K)R (H2K)I − H1I hR

H1I + (H2K)I H1R − (H2K)R hI

] ⎡

⎣
βR

βI

μ

⎤

⎦

∥
∥
∥
∥∥
∥

2

2
	= ‖Gρ‖2

2. (27)

In [21], a QR algorithm is proposed to minimize (26) and
(27) and the interested reader is referred to [21].

III. NOVEL REALIZATION OF MODE: A CLOSED-
FORM SOLUTION

In this section, we show that MODE corresponds to the
best linear unbiased estimator (BLUE) and can be solved
efficiently using weighted least squares (WLS), which is
actually the recently proposed PUMA algorithm.
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A. WLS Formulation of MODE

Without loss of generality, let b0 = 1. We should note
that the value of b0 does not affect the cost function, since
it will be canceled out in �. Therefore, define

b = [b1 . . . bK ]T . (28)

Then, the MODE cost function can be written as a function
of b. It has been demonstrated in [21] that there will be
minor performance loss when the symmetric constraint (22)
is applied [28], [29]. To avoid the performance loss, in the
following, we try to establish a WLS solver for minimizing
the MODE cost function without adding any additional
assumption on b.

PROPOSITION 1 The MODE estimate of b is the solution of
the following WLS problem:

b̂ = arg min
b

(F̂b − ĝ)H Ŵ(F̂b − ĝ) (29)

where F̂ and ĝ are defined in (43) and (44), respectively,
and the weighting matrix is

Ŵ = �̂ ⊗ (BH B)−1. (30)

PROOF See Appendix A. �

The above proposition provides us another view of the
MODE. Since the cost function in (29) has exactly the same
value as (10) (see Appendix A), if b̂ minimizes (29), it also
minimizes (10). As a matter of fact, the weighting matrix
is very important for WLS problem because it affects the
precision of its estimates. However, even the WLS realiza-
tion of MODE is obtained, we still do not know whether Ŵ
in (30) is the optimal weighting matrix or not. Therefore,
finding the optimal weighting matrix is the most impor-
tant issue for the WLS technique. Actually, according to
Gauss–Markov theorem [30], [31], we have the following
proposition.

PROPOSITION 2 The inverse of the weighting matrix Ŵ in
(30) is a consistent estimate of the covariance of (F̂b − ĝ).

PROOF See Appendix B. �

The above proposition shows that Ŵ is the inverse of
the covariance matrix of (F̂b − ĝ), and each block in Ŵ is
equal to the reciprocal of the covariance of residual (F̂ib −
ĝi), ∀i = 1, . . . , K , which means that b̂ is the BLUE of
F̂b ≈ ĝ.

B. WLS Solution for MODE

We now start to provide a new way to minimize the
MODE cost function. At first, we introduce the well-known
result for WLS, i.e., the solution to (29) is

b̂ = (
F̂H ŴF̂

)−1
F̂H Ŵĝ. (31)

Since Ŵ depends on b inherently, we cannot directly use
(31) to compute b. Recall that the WLS is a solution of
F̂b ≈ ĝ. We initialize b̂ using its least squares (LS) solution,
i.e., b̂LS = F̂†g, and then use it to initialize Ŵ [40].

Algorithm 1: WLS Realization of MODE, i.e.,
PUMA.

1: Calculate R̂ and its EVD via (8) and (9),
respectively;

2: Use b̂LS to initialize B in (14);
3: for i = 1, 2, . . . do
4: Compute Ŵ via (30);
5: Estimate b̂ using (31);
6: Compute B using b̂;
7: end for
8: Calculate K roots ẑk from (17) and estimate θ̂k

via (32).

After obtaining b̂, similar to MODE, we first compute
{ẑk}Kk=1 by solving (17), then estimate K DOAs using

θ̂k = sin−1

(
ν∠ẑk

2πd

)
, k = 1, . . . , K. (32)

The detailed steps for PUMA are summarized in
Algorithm 1.

REMARK 1 Actually, the above WLS realization is an ex-
isting algorithm called PUMA, which was first derived for
harmonic retrieval [31], and further extended for DOA es-
timation with a so-called EPUMA technique [40]. In the
following, we refer to PUMA as the above WLS realiza-
tion. PUMA and MODE have similar properties but they
are not the same. Hence, they have different performance,
as we will see later. Their only identicalness is that their
respective cost functions are mathematically equivalent. In
other words, both of them aim at minimizing the same
cost function which is interpreted in two different ways,
namely, MODE minimizes (10), while PUMA minimizes
(29). Specifically, MODE tries to find b̄ based on adding
additional assumption on the conjugate symmetric or unit-
norm property of b̄. However, this assumption may be chal-
lenged in the case of different number of sources. That is,
MODE shows very different performance in even and odd
source number cases. More precisely, according to our ex-
perience, MODE works very well for even K but not for
the odd one. However, PUMA does not have such unstable
performance since it does not require any assumption on b.

C. Mean Square Error Analysis

For large enough data size, perturbation analysis can be
used for obtaining variance of an estimator [22], [34]–[38].
Variance analysis of MODE has been previously studied in
[22], [34], [35]. In this section, using an asymptotic distri-
bution of the sample covariance eigenvectors for complex
observations in [37], [38], a new covariance expression that
is based on the first- and second-order derivatives of (29) is
derived for MODE.

PROPOSITION 3 The asymptotic variance associated with
{θ̂k − θk}Kk=1 of MODE is asymptotically jointly Gaussian
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TABLE I
Complexity Comparison Between MODE and PUMA

Main computational steps Complexity

MODE Cholesky decomposition of V O((M − K)3)
QR factorization of G O(8K3(M − K)3)

PUMA Inverse of (BH B) O((M − K)3)
Calculation of F̂H ŴF̂ O(2K2(M − K)2)
Calculation of F̂H Ŵĝ O(K(M − K)2)

distributed with mean zero and covariance matrix:

E
[
	θ	θT

] ≈ 1

2
Re

{
DZT (FH WoptF)−1Z∗DH

}
. (33)

PROOF See Appendix C. �

D. Complexity Comparison

Table I compares the complexities of MODE and
PUMA.

MODE and PUMA require calculating the sample co-
variance matrix and its EVD, where the computations
for these two parts are O (

M2N
)

and O(M3) flops,
respectively. It is seen from Table I that for MODE, the
amount of operations involved in each iteration step mainly
lies in the Cholesky and QR factorizations of V and G,
which require O((M − K)3) and O(8K3(M − K)3) flops,
respectively. For PUMA, the complexity is mainly caused
by the construction of Ŵ and b̂. The computation of Ŵ
relies on the inverse of BH B, which needs O((M − K)3).
In practice, the inverse of F̂H ŴF̂ ∈ C

K×K is almost never
explicitly calculated. Instead, the Cholesky decomposition
of F̂H ŴF̂ is employed, and for F̂H Ŵĝ, forward and back-
ward substitutions are performed to get the corresponding
estimate of b̂. Since F̂H Ŵĝ and Ŵ are block diagonal,
forming F̂H ŴF̂ and F̂H Ŵĝ take O (

2K2(M − K)2
)

and
O (

K(M − K)2
)

flops, respectively, and finally the back
substitution step requires O(K2(M − K)) flops. There-
fore, except for the calculations of R̂ and its EVD, the
complexity of the remaining steps for MODE is about
O (

8K3(M − K)3
)
, while that of the PUMA is about

O (
(M − K)3 + (2K2 + K)(M − K)2

)
which is smaller

than MODE since (M − K) is usually greater than K ,
which means that PUMA is slightly simpler than MODE.

Generally speaking, no more than three iterations are
enough for PUMA to achieve comparable performance.
Therefore, we suggest to use a fixed number of iterations
(e.g., three iterations) to terminate the algorithm. If M and
N are larger than K , the overall complexity is similar to the
complexity of one iteration, which is O(M2N + M3).

IV. NUMERICAL RESULTS

In this section, we examine the stochastic performance
of PUMA by comparing it with MODE [22], MODEX
[23], [24], EPUMA [40], root-MUSIC, and unitary ESPRIT
algorithms. We also include the Cramér–Rao bound (CRB)
[5] as a performance benchmark, where the CRB is

Fig. 1. RMSE versus SNR when K = 3.

computed as

CRB = σ 2
n

2N
tr

(
Re

((
DH (IM − AA†)D

) � RT
)−1

)
(34)

with D = [∂a(θ1)/∂θ1 . . . ∂a(θK )/∂θK ] and R =
E[x(t)xH (t)] = ARsAH + σ 2

n IM . Here, Rs = E[s(t)sH (t)]
is the signal covariance matrix. The number of iterations
for our scheme and MODE is set to three. For root-MUSIC
and unitary ESPRIT, when coherent signals occur, the FBSS
[20] technique is employed to remove the coherency, where
the number of forward–backward subarrays is equal to
the number of coherent signals. In the following exam-
ples, we consider a ULA composed of M = 10 sensors
receiving K = 3 narrowband signals. Furthermore, 2000
Monte-Carlo trials are utilized to compute the root mean
square error (RMSE), i.e.,

RMSE =
(

1

2000

2000∑

i=1

‖θ̂ i − θ‖2
2

)1/2

(35)

where θ̂ i contains K DOA estimates obtained from the ith
test.

In the first example, we study the RMSE performance
versus SNR. Three signals with DOAs being [−5◦, 2◦, 15◦]
are considered, where the first two signals are coherent and
uncorrelated with the third one. The number of samples is
N = 80. The theoretical RMSE which is computed from
(33) is included to predict the performance of MODE. To
validate the correctness of (33), another RMSE curve which
is obtained from [22] is also included for comparison. It
is seen from Fig. 1 that PUMA outperforms the original
MODE throughout the SNR regime, and its RMSE attains
the CRB when SNR ≤ −5 dB. EPUMA achieves the best
performance and its performance is better than MODEX.
As SNR increases, the RMSE curves of PUMA and original
MODE merge together, and their performance attains the
theoretical RMSE curve as well as the CRB after SNR
≥ 5 dB. The MODEX has better threshold performance
than MODE but not as good as ours. There is a gap between
the RMSE curves of root-MUSIC, unitary ESPRIT, and
CRB since there is a loss of array aperture after applying the
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Fig. 2. RMSE versus SNR when K = 2.

Fig. 3. RMSE versus N when K = 3.

FBSS. Furthermore, the theoretical MSEs computed from
(33) and [22] are exactly the same, which validates that
our theoretical analysis is correct. Fig. 2 shows the RMSE
results when K = 2 and DOAs are θ1 = −5◦ and θ2 = 2◦.
We see that MODE has a huge performance improvement
than the case of K = 3. Although for K = 3 and K = 2,
parameter settings are changed and these two examples
seem not comparable, we want to demonstrate our analysis
in Section III-C that MODE is sensitive to the choice of K .
Actually, the sensitivity of MODE shows not only in this
example, but also in other parameter settings. It does not
perform reliably especially for K = 3. One potential reason
might be the symmetric assumption used in the MODE
solver. The reason behind the performance degradation of
MODE requires further theoretical study, which will be our
future work.

Fig. 3 shows the RMSE versus N . The SNR is 0 dB
and the other parameters are kept the same as Fig. 1. Again,
MODE and MODEX do not perform well even when N

attains 1000, while PUMA and EPUMA are the best esti-
mators for N > 20 and their performance finally attains the
CRB and theoretical RMSE curve. At SNR = 0 dB, MODE
is very sensitive to the symmetry assumption, where the co-

Fig. 4. RMSE versus N when K = 2.

efficients mainly depend on half of its elements, when the
estimates are not correct, after compensating the other half
using conjugate symmetry, the error will be enlarged twice,
resulting in bad performance. We also include an example
similar to Fig. 2 to showcase the performance with K = 2.
It is seen in Fig. 4 that PUMA has very similar performance
as the case of K = 3. However, MODE and MODEX per-
forms very differently. Specifically, their performance un-
der K = 2 is much better than that of K = 3. Furthermore,
as we can see in Figs. 1 and 3 that MODEX performs much
better than MODE. This is mainly due to the fact that in
these two examples, MODEX applies the MODE twice by
assuming the number of sources being K = 3 and K = 4,
and then employs the ML cost function to judiciously select
two final DOAs from the five candidates. Its performance
improvement mainly depends on those generated from the
case of K = 4, where MODE is not sensitive to the sym-
metry assumption and enables to provide reliable DOA
estimates. Such an observation further verifies our analysis
in Remark 1.

In the third example, we study the resolution ability
of PUMA. Three signals are used, where the first two are
coherent and uncorrelated with the third one, and the first
and third DOAs are fixed at θ1 = 0◦ and θ3 = 20◦. The
second DOA θ2 is varied from 2◦ to 7◦. The SNR is 10 dB
and the number of samples is N = 100. It is observed from
Fig. 5 that for closely spaced DOAs, say, 	θ = 2◦, unitary
ESPRIT performs the best. When 	θ ≥ 2.5◦, PUMA and
EPUMA become the best.

In the fourth example, we compare the RMSE perfor-
mance versus SNR where there is only one signal with
its DOA being 0◦. The number of samples is 20. It is seen
from Fig. 6 that PUMA works much better than MODE and
MODEX, and MODE does not work throughout the SNR
region. MODEX performs much better than MODE since
it employs MODE twice with assumed number of signals
being 1 and 2 and its performance improvement mainly de-
pends on the latter case where the source number is even.
This confirms our previous analysis in Remark 1 again. It
should be noted again that PUMA and EPUMA do not have
such a problem, i.e., sensitive to the source number.
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Fig. 5. RMSE versus 	θ .

Fig. 6. RMSE versus SNR when K = 1.

Finally, we compare the complexity of our algorithm
with those of MODE, root-MUSIC, and unitary ESPRIT.1

We vary M from 10 to 60, and set K = M/2 and N = 5M .
It is seen from Fig. 7 that the unitary ESPRIT and root-
MUSIC have almost the same complexity, and both of
them are faster than MODE. The standard MODE is the
most computationally intensive method among the four
competitors. When M becomes larger, our solution is at
least ten times faster than the standard MODE. Note that
the overall complexity between PUMA and MODE is in
the same order, i.e., O(MN2). In each iteration, both al-
gorithms should take the inverse of an K × K matrix.
However, the original MODE needs to perform a QR fac-
torization of a 2(M − K)K × K matrix while ours only
refers to matrix multiplications. When K approaches M ,
the complexity of QR factorization becomes burdened. This

1The MODEX and EPUMA are obviously the most computationally in-
tensive algorithms since both of them require to use the ML cost function
at least (K + P )!/(K!P !) times where P > K , to help select the final K

DOA estimates. When K ≈ M , their complexity becomes huge, especially
for large M . As an example of M = 20, if we choose K = M/2 = 10
and P = K + 2 = 12, we should compute the ML cost function about
6.4 × 105 times, which is very computationally demanding. Due to this
reason, we do not include them for complexity comparison.

Fig. 7. CPU time versus M .

is the main reason why our method is a little bit faster
than MODE.

V. CONCLUSION

In this paper, we have shown that the MODE cost func-
tion is equivalent to the recently proposed PUMA method.
Unlike the original MODE method, PUMA does not require
any assumption and constraints on the polynomial coeffi-
cients, and it has a closed-form expression for the update
of polynomial coefficients. Hence, PUMA is much easier
to be implemented than the original one. Numerical results
show the advantages of PUMA and its variant.

Some interesting results can be observed from simula-
tions, where MODE performs slightly better than PUMA
when the source number is even. However, the former suf-
fers severe performance degradation when the source num-
ber is odd. According to our conjecture, the unstable perfor-
mance of MODE appears not only in our parameter settings
but also in some other settings–even (or odd) number of
sources helps (or destroys) the MODE. However, PUMA
does not have such a problem. Since PUMA and MODE
minimize the same unconstrained optimization problem,
we recommend employing PUMA instead of MODE to
achieve stability. Moreover, MODE still shows advantages
over PUMA in certain cases, we will aim at exploiting their
advantages and combining them together to further improve
the accuracy especially in the low SNR and small sample
scenarios.

APPENDIX A
PROOF OF PROPOSITION 1

We first rewrite (10) as

f (b) = tr
((

BH Ûs

)H (
BH B

)−1
BH Ûs�̂

)

=
K∑

k=1

γ̂k

(
BH ûk

)H (
BH B

)−1
BH ûk. (36)

Then, it is easily seen that

BH ûk = F̂kb − ĝk, k = 1, . . . , K (37)
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where

F̂k =

⎡

⎢
⎢
⎢
⎣

[ûk]K [ûk]K−1 · · · [û1]1

[ûk]K+1 [ûk]K · · · [ûk]2
...

...
...

[ûk]M−1 [ûk]M−2 · · · [ûk]M−K

⎤

⎥
⎥
⎥
⎦

(38)

ĝk = − [[ûk]K+1 · · · [ûk]M ]T . (39)

Substituting (37) into (36), we obtain

f (b) =
K∑

k=1

∣
∣
∣
∣
∣
∣Ŵ1/2

k (F̂kb − ĝk)
∣
∣
∣
∣
∣
∣
2

2
(40)

where the weighting matrix is

Ŵk = γ̂k

(
BH B

)−1
. (41)

Actually, (40) can be written into a more compact form.
To this end, we stack (37) for k = 1, . . . , K , into a vector

[ (
BH û1

)T · · · (
BH ûK

)T ]T = vec
(
BH Ûs

)

= F̂b − ĝ (42)

where

F̂ = [
F̂T

1 . . . F̂T
K

]T
(43)

ĝ = [
ĝT

1 . . . ĝT
K

]T
. (44)

Moreover, define a block diagonal matrix as

Ŵ = blkdiag
(
Ŵ1 . . . ŴK

)

= �̂ ⊗ (
BH B

)−1
. (45)

Thus, (36) becomes

f (b) = (
F̂b − ĝ

)H
Ŵ

(
F̂b − ĝ

)
(46)

which is the WLS objective function of the overdetermined
system F̂b = ĝ with the weighting matrix being Ŵ.

APPENDIX B
PROOF OF COROLLARY 2

According to the Gauss–Markov theorem [30], the op-
timal weighting matrix for WLS is

Wopt =
(
E

[(
F̂b − ĝ

) (
F̂b − ĝ

)H
])−1

. (47)

It follows from (42) that F̂b − ĝ = vec(BH Ûs), and thus
(47) becomes

Wopt =
(
E

[
vec

(
BH Ûs

)
vec

(
BH Ûs

)H
])−1

. (48)

We simplify BH Ûs as

BH Ûs = BH (Us + 	Us) = BH	Us (49)

where Ûs = Us + 	Us and the last equation is obtained by
considering BH Us = 0(M−K)×K , which is always true since
B lies in the null space of A [21].

In the sequel, we will use the following important prop-
erty of the vectorization operator:

vec(A1A2A3) = (AT
3 ⊗ A1)vec(A2). (50)

Using (50) and substituting (49) into (48) yields

Wopt = (
(IK ⊗ B) E

[
	us	uH

s

]
(IK ⊗ B)H

)−1
(51)

where 	us = vec(	Us) = [	uT
1 . . . 	uT

K ]T with 	uK =
ûk − uk, ∀k. It is shown in [37] and [38] that the errors be-
tween the signal eigenvectors have the following property:

E
[
	ui	uH

j

] ≈ λi

N

M∑

k=1
k �=i

λk

(λi − λk)2
ukuH

k δij . (52)

It follows from (52) that

E[	us	uH
s ] ≈ (

E[	u1	uH
1 ] · · · E[	uK	uH

K ]
)
. (53)

Inserting (53) into (51), we obtain a simplified expression
for (51) as

Wopt = �̄ ⊗ (BH B)−1 (54)

where

�̄ = diag

(
N(λ1 − σ 2

n )2

λ1σ 2
n

· · · N(λK − σ 2
n )2

λKσ 2
n

)
. (55)

By replacing σ 2
n , λ1, . . . , λK by their respective consis-

tent estimates, i.e., σ̂ 2
n , λ̂1, . . . , λ̂K , we obtain the consistent

estimate of Wopt as

Ŵopt = ˆ̄� ⊗ (BH B)−1 (56)

where

ˆ̄� = diag

(
N

σ̂ 2
n

(λ̂1 − σ̂ 2
n )2

λ̂1
· · · N

σ̂ 2
n

(λ̂K − σ̂ 2
n )2

λ̂K

)

. (57)

Recall that the solution of (46) is

b̂ = (
F̂H ŴF̂

)−1
F̂H Ŵĝ. (58)

The ˆ̄� can be further simplified since N/σ̂ 2
n will be canceled

out in (58). Now, it is able to replace ˆ̄� by �̂, such that
following (56) will generate the weighting matrix in (30)
and the proof is finished.

APPENDIX C
PROOF OF PROPOSITION 3

Our idea to obtain the closed-form formula to the co-
variance matrix of θ̂ is based on building the connection
between θk , zk , and bk via first- and second-order Taylor
series expansion. Similar analysis has been considered in
many performance analysis work, e.g., [39]–[41], where a
similar analysis is studied for the variance corresponding
to a single θ̂k . However, the covariance matrix of θ̂ is still
not available.

It follows from zi = ej2πd sin(θi )/ν that

	θi ≈ ν

2πd cos (θi)

	zi

jzi

(59)

which leads to

	θ ≈ [	θ1 . . . 	θK ]T

= −jD	z (60)
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where

D = diag

(
ν

z12πd cos (θ1)
· · · ν

zK2πd cos (θK )

)
. (61)

Thus, the covariance matrix of θ̂ is

E
[
	θ	θT

] = 1

4
E

[(
	θ + 	θ∗) (

	θ + 	θ∗)H
]

≈ 1

2
Re

{
DE

[
	z	zT

]
D

+ DE
[
	z	zH

]
DH

}
(62)

where from [40], we have

E
[
	z	zH

] ≈ ZT (FH WoptF)−1Z∗ (63)

E
[
	z	zT

] = 0K×K. (64)

Then, (62) can be simplified as

E
[
	θ	θT

] ≈ 1

2
Re

{
DZT (FH WoptF)−1Z∗DH

}
. (65)

Moreover, it has been shown in [40] that the DOA esti-
mate of PUMA is approximately unbiased, i.e.,

E[	θ ] ≈ 0K. (66)

This completes the proof.
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